Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Antimicrob Agents Chemother ; : e0131523, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517189

RESUMO

Chromosomal and transferable AmpC ß-lactamases represent top resistance mechanisms in different gram-negatives, but knowledge regarding the latter, mostly concerning regulation and virulence-related implications, is far from being complete. To fill this gap, we used Klebsiella pneumoniae (KP) and two different plasmid-encoded AmpCs [DHA-1 (AmpR regulator linked, inducible) and CMY-2 (constitutive)] as models to perform a study in which we show that blockade of peptidoglycan recycling through AmpG permease inactivation abolished DHA-1 inducibility but did not affect CMY-2 production and neither did it alter KP pathogenic behavior. Moreover, whereas regular production of both AmpC-type enzymes did not attenuate KP virulence, when blaDHA-1 was expressed in an ampG-defective mutant, Galleria mellonella killing was significantly (but not drastically) attenuated. Spontaneous DHA-1 hyperproducer mutants were readily obtained in vitro, showing slight or insignificant virulence attenuations together with high-level resistance to ß-lactams only mildly affected by basal production (e.g., ceftazidime, ceftolozane/tazobactam). By analyzing diverse DHA-1-harboring clinical KP strains, we demonstrate that the natural selection of these hyperproducers is not exceptional (>10% of the collection), whereas mutational inactivation of the typical AmpC hyperproduction-related gene mpl was the most frequent underlying mechanism. The potential silent dissemination of this kind of strains, for which an important fitness cost-related contention barrier does not seem to exist, is envisaged as a neglected threat for most ß-lactams effectiveness, including recently introduced combinations. Analyzing whether this phenomenon is applicable to other transferable ß-lactamases and species as well as determining the levels of conferred resistance poses an essential topic to be addressed.IMPORTANCEAlthough there is solid knowledge about the regulation of transferable and especially chromosomal AmpC ß-lactamases in Enterobacterales, there are still gaps to fill, mainly related to regulatory mechanisms and virulence interplays of the former. This work addresses them using Klebsiella pneumoniae as model, delving into a barely explored conception: the acquisition of a plasmid-encoded inducible AmpC-type enzyme whose production can be increased through selection of chromosomal mutations, entailing dramatically increased resistance compared to basal expression but minor associated virulence costs. Accordingly, we demonstrate that clinical K. pneumoniae DHA-1 hyperproducer strains are not exceptional. Through this study, we warn for the first time that this phenomenon may be a neglected new threat for ß-lactams effectiveness (including some recently introduced ones) silently spreading in the clinical context, not only in K. pneumoniae but potentially also in other pathogens. These facts must be carefully considered in order to design future resistance-preventive strategies.

2.
Nat Commun ; 15(1): 1343, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351082

RESUMO

The bacterial cell-wall peptidoglycan is made of glycan strands crosslinked by short peptide stems. Crosslinks are catalyzed by DD-transpeptidases (4,3-crosslinks) and LD-transpeptidases (3,3-crosslinks). However, recent research on non-model species has revealed novel crosslink types, suggesting the existence of uncharacterized enzymes. Here, we identify an LD-transpeptidase, LDTGo, that generates 1,3-crosslinks in the acetic-acid bacterium Gluconobacter oxydans. LDTGo-like proteins are found in Alpha- and Betaproteobacteria lacking LD3,3-transpeptidases. In contrast with the strict specificity of typical LD- and DD-transpeptidases, LDTGo can use non-terminal amino acid moieties for crosslinking. A high-resolution crystal structure of LDTGo reveals unique features when compared to LD3,3-transpeptidases, including a proline-rich region that appears to limit substrate access, and a cavity accommodating both glycan chain and peptide stem from donor muropeptides. Finally, we show that DD-crosslink turnover is involved in supplying the necessary substrate for LD1,3-transpeptidation. This phenomenon underscores the interplay between distinct crosslinking mechanisms in maintaining cell wall integrity in G. oxydans.


Assuntos
Peptidil Transferases , Peptidil Transferases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Bactérias , Peptídeos/química , Polissacarídeos , Peptidoglicano/química
3.
Sci Rep ; 14(1): 189, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167986

RESUMO

Enterobacter cloacae starred different pioneer studies that enabled the development of a widely accepted model for the peptidoglycan metabolism-linked regulation of intrinsic class C cephalosporinases, highly conserved in different Gram-negatives. However, some mechanistic and fitness/virulence-related aspects of E. cloacae choromosomal AmpC-dependent resistance are not completely understood. The present study including knockout mutants, ß-lactamase cloning, gene expression analysis, characterization of resistance phenotypes, and the Galleria mellonella infection model fills these gaps demonstrating that: (i) AmpC enzyme does not show any collateral activity impacting fitness/virulence; (ii) AmpC hyperproduction mediated by ampD inactivation does not entail any biological cost; (iii) alteration of peptidoglycan recycling alone or combined with AmpC hyperproduction causes no attenuation of E. cloacae virulence in contrast to other species; (iv) derepression of E. cloacae AmpC does not follow a stepwise dynamics linked to the sequential inactivation of AmpD amidase homologues as happens in Pseudomonas aeruginosa; (v) the enigmatic additional putative AmpC-type ß-lactamase generally present in E. cloacae does not contribute to the classical cephalosporinase hyperproduction-based resistance, having a negligible impact on phenotypes even when hyperproduced from multicopy vector. This study reveals interesting particularities in the chromosomal AmpC-related behavior of E. cloacae that complete the knowledge on this top resistance mechanism.


Assuntos
Enterobacter cloacae , Peptidoglicano , beta-Lactamases/metabolismo , Proteínas de Bactérias/metabolismo , Cefalosporinase/genética , Resistência beta-Lactâmica/genética , Testes de Sensibilidade Microbiana
4.
FEMS Microbiol Rev ; 47(2)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893807

RESUMO

Given the growing clinical-epidemiological threat posed by the phenomenon of antibiotic resistance, new therapeutic options are urgently needed, especially against top nosocomial pathogens such as those within the ESKAPE group. In this scenario, research is pushed to explore therapeutic alternatives and, among these, those oriented toward reducing bacterial pathogenic power could pose encouraging options. However, the first step in developing these antivirulence weapons is to find weak points in the bacterial biology to be attacked with the goal of dampening pathogenesis. In this regard, during the last decades some studies have directly/indirectly suggested that certain soluble peptidoglycan-derived fragments display virulence-regulatory capacities, likely through similar mechanisms to those followed to regulate the production of several ß-lactamases: binding to specific transcriptional regulators and/or sensing/activation of two-component systems. These data suggest the existence of intra- and also intercellular peptidoglycan-derived signaling capable of impacting bacterial behavior, and hence likely exploitable from the therapeutic perspective. Using the well-known phenomenon of peptidoglycan metabolism-linked ß-lactamase regulation as a starting point, we gather and integrate the studies connecting soluble peptidoglycan sensing with fitness/virulence regulation in Gram-negatives, dissecting the gaps in current knowledge that need filling to enable potential therapeutic strategy development, a topic which is also finally discussed.


Assuntos
Peptidoglicano , beta-Lactamases , Peptidoglicano/metabolismo , Virulência , beta-Lactamases/metabolismo , Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
5.
Microbiol Spectr ; 10(5): e0270022, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36214681

RESUMO

In the current scenario of growing antibiotic resistance, understanding the interplay between resistance mechanisms and biological costs is crucial for designing therapeutic strategies. In this regard, intrinsic AmpC ß-lactamase hyperproduction is probably the most important resistance mechanism of Pseudomonas aeruginosa, proven to entail important biological burdens that attenuate virulence mostly under peptidoglycan recycling alterations. P. aeruginosa can acquire resistance to new ß-lactam-ß-lactamase inhibitor combinations (ceftazidime-avibactam and ceftolozane-tazobactam) through mutations affecting ampC and its regulatory genes, but the impact of these mutations on the associated biological cost and the role that ß-lactamase activity plays per se in contributing to the above-mentioned virulence attenuation are unknown. The same questions remain unsolved for plasmid-encoded AmpC-type ß-lactamases such as FOX enzymes, some of which also provide resistance to new ß-lactam-ß-lactamase inhibitor combinations. Here, we assessed from different perspectives the effects of changes in the active center and, thus, in the hydrolytic spectrum resistance to inhibitors of AmpC-type ß-lactamases on the fitness and virulence of P. aeruginosa, using site-directed mutagenesis; the previously described AmpC variants T96I, G183D, and ΔG229-E247; and, finally, blaFOX-4 versus blaFOX-8. Our results indicate the essential role of AmpC activity per se in causing the reported full virulence attenuation (in terms of growth, motility, cytotoxicity, and Galleria mellonella larvae killing), although the biological cost of the above-mentioned AmpC-type variants was similar to that of the wild-type enzymes. This suggests that there is not an important biological burden that may limit the selection/spread of these variants, which could progressively compromise the future effectiveness of the above-mentioned drug combinations. IMPORTANCE The growing antibiotic resistance of the top nosocomial pathogen Pseudomonas aeruginosa pushes research to explore new therapeutic strategies, for which the resistance-versus-virulence balance is a promising source of targets. While resistance often entails significant biological costs, little is known about the bases of the virulence attenuations associated with a resistance mechanism as extraordinarily relevant as ß-lactamase production. We demonstrate that besides potential energy and cell wall alterations, the enzymatic activity of the P. aeruginosa cephalosporinase AmpC is essential for causing the full attenuation associated with its hyperproduction by affecting different features related to pathogenesis, a fact exploitable from the antivirulence perspective. Less encouraging, we also show that the production of different chromosomal/plasmid-encoded AmpC derivatives conferring resistance to some of the newest antibiotic combinations causes no significantly increased biological burdens, which suggests a free way for the selection/spread of these types of variants, potentially compromising the future effectiveness of these antipseudomonal therapies.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Inibidores de beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Cefalosporinase/metabolismo , Cefalosporinase/farmacologia , Cefalosporinase/uso terapêutico , Peptidoglicano/metabolismo , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Tazobactam/metabolismo , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação de Medicamentos , Infecções por Pseudomonas/tratamento farmacológico
6.
J Antimicrob Chemother ; 77(7): 1862-1872, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35451008

RESUMO

OBJECTIVES: To determine the susceptibility profiles and the resistome of Pseudomonas aeruginosa isolates from European ICUs during a prospective cohort study (ASPIRE-ICU). METHODS: 723 isolates from respiratory samples or perianal swabs of 402 patients from 29 sites in 11 countries were studied. MICs of 12 antibiotics were determined by broth microdilution. Horizontally acquired ß-lactamases were analysed through phenotypic and genetic assays. The first respiratory isolates from 105 patients providing such samples were analysed through WGS, including the analysis of the resistome and a previously defined genotypic resistance score. Spontaneous mutant frequencies and the genetic basis of hypermutation were assessed. RESULTS: All agents except colistin showed resistance rates above 20%, including ceftolozane/tazobactam and ceftazidime/avibactam. 24.9% of the isolates were XDR, with a wide intercountry variation (0%-62.5%). 13.2% of the isolates were classified as DTR (difficult-to-treat resistance). 21.4% of the isolates produced ESBLs (mostly PER-1) or carbapenemases (mostly NDM-1, VIM-1/2 and GES-5). WGS showed that these determinants were linked to high-risk clones (particularly ST235 and ST654). WGS revealed a wide repertoire of mutation-driven resistance mechanisms, with multiple lineage-specific mutations. The most frequently mutated genes were gyrA, parC, oprD, mexZ, nalD and parS, but only two of the isolates were hypermutable. Finally, a good accuracy of the genotypic score to predict susceptibility (91%-100%) and resistance (94%-100%) was documented. CONCLUSIONS: An overall high prevalence of resistance is documented European ICUs, but with a wide intercountry variability determined by the dissemination of XDR high-risk clones, arguing for the need to reinforce infection control measures.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Compostos Azabicíclicos , Ceftazidima , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética
7.
Microbiol Spectr ; 10(1): e0201921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35171032

RESUMO

In the current scenario of antibiotic resistance magnification, new weapons against top nosocomial pathogens like Pseudomonas aeruginosa are urgently needed. The interplay between ß-lactam resistance and virulence is considered a promising source of targets to be attacked by antivirulence therapies, and in this regard, we previously showed that a peptidoglycan recycling blockade dramatically attenuated the pathogenic power of P. aeruginosa strains hyperproducing the chromosomal ß-lactamase AmpC. Here, we sought to ascertain whether this observation could be applicable to other ß-lactamases. To do so, P. aeruginosa wild-type or peptidoglycan recycling-defective strains (ΔampG and ΔnagZ) harboring different cloned ß-lactamases (transferable GES, VIM, and OXA types) were used to assess their virulence in Galleria mellonella larvae by determining 50% lethal doses (LD50s). A mild yet significant LD50 increase was observed after peptidoglycan recycling disruption per se, whereas the expression of class A and B enzymes did not impact virulence. While the production of the narrow-spectrum class D OXA-2 entailed a slight attenuation, its extended-spectrum derivatives OXA-226 (W159R [bearing a change of W to R at position 159]), OXA-161 (N148D), and principally, OXA-539 (D149 duplication) were associated with outstanding virulence impairments, especially in recycling-defective backgrounds (with some LD50s being >1,000-fold that of the wild type). Although their exact molecular bases remain to be deciphered, these results suggest that mutations affecting the catalytic center and, therefore, the hydrolytic spectrum of OXA-2-derived enzymes also drastically impact the pathogenic power of P. aeruginosa. This work provides new and relevant knowledge to the complex topic of the interplay between the production of ß-lactamases and virulence that could be useful to build future therapeutic strategies against P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is one of the leading nosocomial pathogens whose growing resistance makes the development of therapeutic options extremely urgent. The resistance-virulence interplay has classically aroused researchers' interest as a source of therapeutic targets. In this regard, we describe a wide array of virulence attenuations associated with different transferable ß-lactamases, among which the production of OXA-2-derived extended-spectrum ß-lactamases stood out as a dramatic handicap for pathogenesis, likely as a side effect of mutations causing the expansion of their hydrolytic spectrums. Moreover, our results confirm the validity of disturbing peptidoglycan recycling as a weapon to attenuate P. aeruginosa virulence in class C and D ß-lactamase production backgrounds. In the current scenario of dissemination of horizontally acquired ß-lactamases, this work brings out new data on the complex interplay between the production of specific enzymes and virulence attenuation that, if complemented with the characterization of the underlying mechanisms, will likely be exploitable to develop future virulence-targeting antipseudomonal strategies.


Assuntos
Peptidoglicano/efeitos dos fármacos , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cefalosporinase , Transferência Genética Horizontal , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Mariposas , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Virulência/efeitos dos fármacos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
8.
Biol Rev Camb Philos Soc ; 97(3): 1005-1037, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043558

RESUMO

Mammalian innate immunity employs several humoral 'weapons' that target the bacterial envelope. The threats posed by the multidrug-resistant 'ESKAPE' Gram-negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope-targeting (peptidoglycan and/or membrane-targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram-negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope-targeting therapeutic options to tackle the challenge of antimicrobial resistance.


Assuntos
Acinetobacter baumannii , Animais , Antibacterianos/farmacologia , Mamíferos , Peptídeos , Pseudomonas aeruginosa
9.
Nat Commun ; 12(1): 2460, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911082

RESUMO

It is well established that antibiotic treatment selects for resistance, but the dynamics of this process during infections are poorly understood. Here we map the responses of Pseudomonas aeruginosa to treatment in high definition during a lung infection of a single ICU patient. Host immunity and antibiotic therapy with meropenem suppressed P. aeruginosa, but a second wave of infection emerged due to the growth of oprD and wbpM meropenem resistant mutants that evolved in situ. Selection then led to a loss of resistance by decreasing the prevalence of low fitness oprD mutants, increasing the frequency of high fitness mutants lacking the MexAB-OprM efflux pump, and decreasing the copy number of a multidrug resistance plasmid. Ultimately, host immunity suppressed wbpM mutants with high meropenem resistance and fitness. Our study highlights how natural selection and host immunity interact to drive both the rapid rise, and fall, of resistance during infection.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Meropeném/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Seleção Genética/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Humanos , Hidroliases/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Plasmídeos/genética , Porinas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Análise de Sequência de DNA , Choque Hemorrágico/microbiologia
10.
J Med Microbiol ; 69(4): 492-504, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32427563

RESUMO

Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.


Assuntos
Peptidoglicano/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Antibacterianos/farmacologia , Humanos , Imunidade Inata , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
12.
mSystems ; 4(6)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796566

RESUMO

The hyperproduction of the chromosomal AmpC ß-lactamase is the main mechanism driving ß-lactam resistance in Pseudomonas aeruginosa, one of the leading opportunistic pathogens causing nosocomial acute and chronic infections in patients with underlying respiratory diseases. In the current scenario of the shortage of effective antipseudomonal drugs, understanding the molecular mechanisms mediating AmpC hyperproduction in order to develop new therapeutics against this fearsome pathogen is of great importance. It has been accepted for decades that certain cell wall-derived soluble fragments (muropeptides) modulate AmpC production by complexing with the transcriptional regulator AmpR and acquiring different conformations that activate/repress ampC expression. However, these peptidoglycan-derived signals have never been characterized in the highly prevalent P. aeruginosa stable AmpC hyperproducer mutants. Here, we demonstrate that the previously described fragments enabling the transient ampC hyperexpression during cefoxitin induction (1,6-anhydro-N-acetylmuramyl-pentapeptides) also underlie the dacB (penicillin binding protein 4 [PBP4]) mutation-driven stable hyperproduction but differ from the 1,6-anhydro-N-acetylmuramyl-tripeptides notably overaccumulated in the ampD knockout mutant. In addition, a simultaneous greater accumulation of both activators appears linked to higher levels of AmpC hyperproduction, although our results suggest a much stronger AmpC-activating potency for the 1,6-anhydro-N-acetylmuramyl-pentapeptide. Collectively, our results propose a model of AmpC control where the activator fragments, with qualitative and quantitative particularities depending on the pathways and levels of ß-lactamase production, dominate over the repressor (UDP-N-acetylmuramyl-pentapeptide). This study represents a major step in understanding the foundations of AmpC-dependent ß-lactam resistance in P. aeruginosa, potentially useful to open new therapeutic conceptions intended to interfere with the abovementioned cell wall-derived signaling.IMPORTANCE The extensive use of ß-lactam antibiotics and the bacterial adaptive capacity have led to the apparently unstoppable increase of antimicrobial resistance, one of the current major global health challenges. In the leading nosocomial pathogen Pseudomonas aeruginosa, the mutation-driven AmpC ß-lactamase hyperproduction stands out as the main resistance mechanism, but the molecular cues enabling this system have remained elusive until now. Here, we provide for the first time direct and quantitative information about the soluble cell wall-derived fragments accounting for the different levels and pathways of AmpC hyperproduction. Based on these results, we propose a hierarchical model of signals which ultimately govern ampC hyperexpression and resistance.

13.
Front Microbiol ; 10: 1868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507543

RESUMO

Pseudomonas aeruginosa is one of the first causes of acute nosocomial and chronic infections in patients with underlying respiratory pathologies such as cystic fibrosis (CF). It has been proposed that P. aeruginosa accumulates mutations driving to peptidoglycan modifications throughout the development of the CF-associated infection, as a strategy to lower the immune detection hence ameliorating the chronic persistence. As well, some studies dealing with peptidoglycan modifications driving to a better survival within the host have been published in other gram-negatives. According to these facts, the gram-negative peptidoglycan could be considered as a pathogen-associated molecular pattern with very important implications regarding the host's detection-response, worthy to dissect in detail. For this reason, in this work we characterized for the first time the peptidoglycans of three large collections [early CF, late CF and acute infection (bloodstream) P. aeruginosa strains] from qualitative (HPLC), quantitative and inflammatory capacity-related perspectives. The final goal was to identify composition trends potentially supporting the cited strategy of evasion/resistance to the immune system and providing information regarding the differential intrinsic adaptation depending on the type of infection. Although we found several punctual strain-specific particularities, our results indicated a high degree of inter-collection uniformity in the peptidoglycan-related features and the absence of trends amongst the strains studied here. These results suggest that the peptidoglycan of P. aeruginosa is a notably conserved structure in natural isolates regardless of transitory changes that some external conditions could force. Finally, the inverse correlation between the relative amount of stem pentapeptides within the murein sacculus and the resistance to immune lytic attacks against the peptidoglycan was also suggested by our results. Altogether, this work is a major step ahead to understand the biology of peptidoglycan from P. aeruginosa natural strains, hopefully useful in future for therapeutic alternatives design.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31383666

RESUMO

The carbapenem-hydrolyzing class D ß-lactamases (CHDLs) are the main mechanism of carbapenem resistance in Acinetobacter baumannii CHDLs are not effectively inactivated by clinically available ß-lactam-type inhibitors. We have previously described the in vitro efficacy of the inhibitor LN-1-255 in combination with carbapenems. The aim of this study was to compare the efficacy of LN-1-255 with that of imipenem in murine pneumonia using A. baumannii strains carrying their most extended carbapenemases, OXA-23 and OXA-24/40. The blaOXA-23 and blaOXA-24/40 genes were cloned into the carbapenem-susceptible A. baumannii ATCC 17978 strain. Clinical isolates Ab1 and JC12/04, producing the enzymes OXA-23 and OXA-24/40, respectively, were used in the study. Pharmacokinetic (PK) parameters were determined. An experimental pneumonia model was used to evaluate the efficacy of the combined imipenem-LN-1-255 therapy. MICs of imipenem decreased between 32- and 128-fold in the presence of LN-1-255. Intramuscular treatment with imipenem-LN-1-255 (30/50 mg/kg) decreased the bacterial burden by (i) 4 and 1.7 log10 CFU/g lung in the infection with the ATCC 17978-OXA-23 and Ab1 strains, respectively, and by (ii) 2.5 and 4.5 log10 CFU/g lung in the infection produced by the ATCC 17978-OXA-24/40 and the JC12/04 strains, respectively. In all assays, combined therapy offered higher protection against pneumonia than that provided by monotherapy. No toxicity was observed in treated mice. Imipenem treatment combined with LN-1-255 treatment significantly reduced the severity of infection by carbapenem-resistant A. baumannii strains carrying CHDLs. Preclinical assays demonstrated the potential of LN-1-255 and imipenem therapy as a new antibacterial treatment.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Anti-Infecciosos/uso terapêutico , Óxidos S-Cíclicos/uso terapêutico , Imipenem/uso terapêutico , Penicilinas/uso terapêutico , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo
15.
J Infect Dis ; 220(11): 1729-1737, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31325363

RESUMO

BACKGROUND: Searching for new strategies to defeat Pseudomonas aeruginosa is of paramount importance. Previous works in vitro showed that peptidoglycan recycling blockade disables AmpC-dependent resistance and enhances susceptibility against cell-wall-targeting immunity. Our objective was to validate these findings in murine models.This study shows for the first time in different murine models of infection that blocking the peptidoglycan recycling in Pseudomonas aeruginosa causes an important virulence impairment and disables AmpC-mediated resistance, being hence validated as a promising therapeutic target. METHODS: Wildtype PAO1, recycling-defective AmpG and NagZ mutants, an AmpC hyperproducer dacB mutant, and their combinations were used to cause systemic/respiratory infections in mice. Their survival, bacterial burden, inflammation level, and effectiveness of ceftazidime or subtherapeutic colistin to treat the infections were assessed. RESULTS: Inactivation of AmpG or NagZ significantly attenuated the virulence in terms of mice mortality, bacterial load, and inflammation. When inactivating these genes in the dacB-defective background, the ß-lactam resistance phenotype was abolished, disabling the emergence of ceftazidime-resistant mutants, and restoring ceftazidime for treatment. Subtherapeutic colistin was shown to efficiently clear the infection caused by the recycling-defective strains, likely due to the combined effect with the mice cell-wall- targeting immunity. CONCLUSIONS: This study brings us one step closer to new therapies intended to disable P. aeruginosa AmpC-mediated resistance and dampen its virulence, and strongly support the interest in developing efficient AmpG and/or NagZ inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , beta-Lactamas/administração & dosagem , Animais , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Carga Bacteriana , Ceftazidima/administração & dosagem , Parede Celular/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Membrana Transportadoras/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/microbiologia , Análise de Sobrevida , Resultado do Tratamento , Virulência
16.
Sci Rep ; 9(1): 3575, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837659

RESUMO

In the current scenario of high antibiotic resistance, the search for therapeutic options against Pseudomonas aeruginosa must be approached from different perspectives: cell-wall biology as source of bacterial weak points and our immune system as source of weapons. Our recent study suggests that once the permeability barrier has been overcome, the activity of our cell-wall-targeting immune proteins is notably enhanced, more in mutants with impaired peptidoglycan recycling. The present work aims at analyzing the activity of these proteins [lysozyme and Peptidoglycan-Recognition-Proteins (PGLYRPs)], alone or with a permeabilizer (subinhibitory colistin) in clinical strains, along with other features related to the cell-wall. We compared the most relevant and complementary scenarios: acute (bacteremia) and chronic infections [early/late isolates from lungs of cystic fibrosis (CF) patients]. Although a low activity of lysozyme/PGLYRPs per se (except punctual highly susceptible strains) was found, the colistin addition significantly increased their activity regardless of the strains' colistin resistance levels. Our results show increased susceptibility in late CF isolates, suggesting that CF adaptation renders P. aeruginosa more vulnerable to proteins targeting the cell-wall. Thus, our work suggests that attacking some P. aeruginosa cell-wall biology-related elements to increase the activity of our innate weapons could be a promising therapeutic strategy.


Assuntos
Parede Celular/metabolismo , Citocinas/metabolismo , Pseudomonas aeruginosa/fisiologia , Bacteriemia/imunologia , Bacteriemia/metabolismo , Fibrose Cística/imunologia , Fibrose Cística/metabolismo , Humanos , Imunidade Inata , Muramidase/metabolismo , beta-Defensinas/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30782985

RESUMO

Zidebactam and WCK 5153 are novel bicyclo-acyl hydrazide (BCH) agents that have previously been shown to act as ß-lactam enhancer (BLE) antibiotics in Pseudomonas aeruginosa and Acinetobacter baumannii The objectives of this work were to identify the molecular targets of these BCHs in Klebsiella pneumoniae and to investigate their potential BLE activity for cefepime and aztreonam against metallo-ß-lactamase (MBL)-producing strains in vitro and in vivo Penicillin binding protein (PBP) binding profiles were determined by Bocillin FL assay, and 50% inhibitory concentrations (IC50s) were determined using ImageQuant TL software. MICs and kill kinetics for zidebactam, WCK 5153, and cefepime or aztreonam, alone and in combination, were determined against clinical K. pneumoniae isolates producing MBLs VIM-1 or NDM-1 (plus ESBLs and class C ß-lactamases) to assess the in vitro enhancer effect of BCH compounds in conjunction with ß-lactams. Additionally, murine systemic and thigh infection studies were conducted to evaluate BLE effects in vivo Zidebactam and WCK 5153 showed specific, high PBP2 affinity in K. pneumoniae The MICs of BLEs were >64 µg/ml for all MBL-producing strains. Time-kill studies showed that a combination of these BLEs with either cefepime or aztreonam provided 1 to >3 log10 kill against MBL-producing K. pneumoniae strains. Furthermore, the bactericidal synergy observed for these BLE-ß-lactam combinations translated well into in vivo efficacy even in the absence of MBL inhibition by BLEs, a characteristic feature of the ß-lactam enhancer mechanism of action. Zidebactam and WCK 5153 are potent PBP2 inhibitors and display in vitro and in vivo BLE effects against multidrug-resistant (MDR) K. pneumoniae clinical isolates producing MBLs.


Assuntos
Compostos Azabicíclicos/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Ciclo-Octanos/farmacologia , Octanos/farmacologia , Piperidinas/farmacologia , beta-Lactamas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo
18.
Microbiol Mol Biol Rev ; 82(4)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209071

RESUMO

The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for ß-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as ß-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic ß-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired ß-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.


Assuntos
Bactérias Gram-Negativas/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Peptidoglicano/metabolismo , Animais , Antibacterianos/metabolismo , Parede Celular/química , Bactérias Gram-Negativas/fisiologia , Humanos , Camundongos , Camundongos Knockout , Peptidoglicano/química , Virulência , beta-Lactamases/metabolismo
19.
FEMS Microbiol Rev ; 41(6): 781-815, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029112

RESUMO

This review deeply addresses for the first time the diversity, regulation and mechanisms leading to mutational overexpression of intrinsic ß-lactamases from non-fermenting and other non-Enterobacteriaceae Gram-negative opportunistic pathogens. After a general overview of the intrinsic ß-lactamases described so far in these microorganisms, including circa. 60 species and 100 different enzymes, we review the wide array of regulatory pathways of these ß-lactamases. They include diverse LysR-type regulators, which control the expression of ß-lactamases from relevant nosocomial pathogens such as Pseudomonas aeruginosa or Stenothrophomonas maltophilia or two-component regulators, with special relevance in Aeromonas spp., along with other pathways. Likewise, the multiple mutational mechanisms leading to ß-lactamase overexpression and ß-lactam resistance development, including AmpD (N-acetyl-muramyl-L-alanine amidase), DacB (PBP4), MrcA (PPBP1A) and other PBPs, BlrAB (two-component regulator) or several lytic transglycosylases among others, are also described. Moreover, we address the growing evidence of a major interplay between ß-lactamase regulation, peptidoglycan metabolism and virulence. Finally, we analyse recent works showing that blocking of peptidoglycan recycling (such as inhibition of NagZ or AmpG) might be useful to prevent and revert ß-lactam resistance. Altogether, the provided information and the identified gaps should be valuable for guiding future strategies for combating multidrug-resistant Gram-negative pathogens.


Assuntos
Variação Genética , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/patogenicidade , Mutação , Peptidoglicano/genética
20.
Molecules ; 22(8)2017 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825625

RESUMO

Some novel (phenyl-diazenyl)phenols (4a-m) were designed and synthesized to be evaluated for their antibacterial activity. Starting from an active previously-synthesized azobenzene chosen as lead compound, we introduced some modifications and optimization of the structure, in order to improve solubility and drug conveyance. Structures of all newly-synthesized compounds were confirmed by ¹H nuclear magnetic resonance (NMR), mass spectrometry, and UV-Vis spectroscopy. Antibacterial activity of the new compounds was tested with the dilution method against the bacteria strains Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa PAO1. All the compounds were selectively active against Gram-positive bacteria. In particular, compounds 4d, 4h, and 4i showed the highest activity against S. aureus and Listeria monocytogenes, reaching remarkable MIC100 values of 4 µg/mL and 8 µg/mL. The relationship between antimicrobial activity and compound structure has suggested that the presence of hydroxyl groups seems to be essential for antimicrobial activity of phenolic compounds.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Compostos Aza/síntese química , Compostos Aza/farmacologia , Listeria monocytogenes/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Compostos Aza/química , Testes de Sensibilidade Microbiana , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...